All posts by Bruce Jenkins

Multi-objective optimization of a motorcycle composite swing-arm

agusta1
Motorbike swing-arm. Source: iChrome

Composite materials are rapidly supplanting metals in racing and sport vehicles, providing comparable strength and stiffness at much lower weight. This project was a feasibility study to replace the single-sided swing-arm in MV Agusta’s high-performance F4 1000R and Brutale 990R/1090RR motorcycles, originally made of aluminum alloy, with a new design consisting of resin transfer molding (RTM) carbon composite. Injection-based technologies for long-fiber reinforcement such as RTM have proven particularly effective for motorsport cars and motorbikes. Continue reading

Hull form optimization of a mega-boxer

dsme_megaboxer
MSC Danit. Source: DSME

With a capacity of 14,000 TEUs, an overall length of 365.5 meters and a deadweight of 165,517 metric tons, the MSC Danit became the world’s largest container vessel when finished by Korean shipyard Daewoo Shipbuilding & Marine Engineering (DSME). A New Panamax design, the ship offers excellent performance despite its record size. DSME used FRIENDSHIP SYSTEMSCAESES / FRIENDSHIP-Framework (FFW) for variation and optimization of proven parent ships to arrive at a design with maximum performance and efficiency. The final hull displayed less than 50% of the wave resistance of the baseline design, and the hydrodynamic optimization in CAESES/FFW had a favorable effect on propulsion performance. Continue reading

Aerodynamic and structural optimization of a turbofan

smartdo1
Geometry of existing fan. Source: FEA-Opt

Optimizing turbofan designs is challenging because of the need to deal with both aerodynamic and structural performance. While designing a fan with high performance and efficiency is important, strength and reliability of the structure are also critical. Further, integrating parametric CAD, CFD and stress analysis is not a trivial task and usually takes extensive effort.

In this project SmartDO and ANSYS were utilized together to optimize a turbofan. The technical services team at SmartDO’s developer, FEA-Opt Technology, helped the customer build a parametric model with ANSYS DesignModeler, construct the CFX and mechanical analysis block, and integrate SmartDO with ANSYS Workbench. SmartDO was able to increase the mass flow of the fan by almost 14% while slightly reducing the maximum stress under aerodynamic and structural loading. These results showed promising possibilities for further design development. Continue reading

Multidisciplinary optimization of ground vehicle dynamics

Pratt & Miller Engineering evolved from a small business focused on designing and building race cars into a full-service engineering and low-volume manufacturing company serving a global customer base in the defense, automotive and powersports industries. After evaluating multiple optimization tools, Pratt & Miller selected Red Cedar Technology’s HEEDS MDO and its SHERPA algorithm as the only optimization technology that could solve its highly constrained models. Continue reading

MBSE—Platform to accelerate adoption of design space exploration?

These issues will be the focus of my Analyst Briefing session at COFES 2015, Scottsdale, Arizona, April 16-19. Hope to see you there!

Design space exploration, design optimization and process integration technologies are creating value for manufacturers around the world, delivering results that weren’t practical or even possible with older tools and methods. Yet few of these vendors have matched the robust double-digit growth of mainstream CAE in recent years. Can the move by engineering organizations toward model-based systems engineering (MBSE) serve as a platform to accelerate adoption of design space exploration? Continue reading

Design space exploration: Institutionalizing the practice

EVENT NOTICE—If you’re in the Detroit area, join Noesis Solutions’ free seminar April 9 on Innovations in Process Integration & Design Optimization. You’ll hear three perspectives on how this technology can help you streamline your simulation processes and identify benchmark product designs in less time, including a presentation by me on Innovative Uses of Optimization for Engineering Design Problems. Event and registration information here.

  ⦁  ⦁

Achieving institutional adoption of design space exploration, design optimization and process integration is a crucial goal for engineering organizations working to establish these as strategic competencies, not just tactical. Too often implemented at only the department or workgroup level, the technologies and their attendant work processes need to be recognized and given backing as enterprise capabilities to have their greatest impact on engineering’s ability to advance corporate strategic objectives. [See also Design space exploration: Justifying the investment.] Continue reading

Ford adopts ESTECO’s SOMO to institutionalize enterprise MDO

SOMO_optimization_composition
Source: ESTECO

Ford Motor Company adopted ESTECO’s SOMO as a tool to enable what it terms an enterprise multidisciplinary design optimization (EMDO) system, announced Dr. Yan Fu, technical leader of business strategy and engineering optimization at Ford. SOMO is an enterprise collaboration and distributed execution framework developed by ESTECO and customized to meet Ford’s engineering processes and IT requirements.

Ford’s move affirms two key points we have long observed:

  • MDO is a strategic capability for engineering organizations, not just tactical.
  • To have strategic impact, MDO needs to be institutionalized at the enterprise level, not implemented as just a departmental or workgroup capability.

Continue reading

Geometry optimization of a static helix mixer

datadvance_1
Source: DATADVANCE

Static helix mixers are widely used in the chemical industry for in-line blending of liquids under laminar flow conditions. Geometric modification of their elements can yield significant improvements in mixing performance. In a project for Sulzer Mixpac, a leading provider of mixer technologies, DATADVANCE determined the optimal geometric parameters for a helix mixer that yield minimal pressure drop together with best mixing performance. Continue reading

Geometry and beyond: Optimization taxonomy and methods

The power of numerical optimization in engineering design is its ability to rationally and rapidly search through alternatives for the best possible design(s). Parameters in a design that can be varied to search for a “best” design are design variables. Given these, design can be structured as the process of finding the minimum or maximum of some attribute, termed the objective function. For a design to be acceptable, it also must satisfy certain requirements, or design constraints. Optimization is the process of automatically changing the design variables to identify the minimum or maximum of the objective function while satisfying all the required design constraints. [This survey of design optimization methods is in complement to our recent review of design exploration techniques. See also Design exploration vs. design optimization.] Continue reading

Onshape technology and pricing demolish CAD accessibility barriers

Onshape Mac and iPhone
Source: Onshape

Onshape went public with avidly anticipated details of its full-cloud 3D CAD system that lets everyone on a design team work together using any web browser, phone or tablet, and has data management and collaboration built in at its core. While this groundbreaking technological approach has generated high excitement in the run-up to today’s unveiling, Onshape’s pricing model is an equally disruptive component of its strategy to make professional-grade CAD radically more accessible than ever before. Continue reading