All posts by Bruce Jenkins

Geometry and beyond: Optimization taxonomy and methods

The power of numerical optimization in engineering design is its ability to rationally and rapidly search through alternatives for the best possible design(s). Parameters in a design that can be varied to search for a “best” design are design variables. Given these, design can be structured as the process of finding the minimum or maximum of some attribute, termed the objective function. For a design to be acceptable, it also must satisfy certain requirements, or design constraints. Optimization is the process of automatically changing the design variables to identify the minimum or maximum of the objective function while satisfying all the required design constraints. [This survey of design optimization methods is in complement to our recent review of design exploration techniques. See also Design exploration vs. design optimization.] Continue reading

Onshape technology and pricing demolish CAD accessibility barriers

Onshape Mac and iPhone
Source: Onshape

Onshape went public with avidly anticipated details of its full-cloud 3D CAD system that lets everyone on a design team work together using any web browser, phone or tablet, and has data management and collaboration built in at its core. While this groundbreaking technological approach has generated high excitement in the run-up to today’s unveiling, Onshape’s pricing model is an equally disruptive component of its strategy to make professional-grade CAD radically more accessible than ever before. Continue reading

Optimizing capex/opex tradeoffs in built-asset engineering

Most often applied to manufactured product development, design exploration and optimization also hold potential to improve—some would say, bring long-overdue transformation to—the engineering of constructed assets: commercial and residential buildings, discrete manufacturing facilities, process and power plants, offshore platforms. While some EPC firms serving process/power and offshore markets have made substantial progress with these tools and methods, the A/E industry still has far to go in tapping their considerable potential to improve building design and manufacturing facility engineering. With the mounting economic, environmental and public-policy pressures to deliver higher-performing built assets, we expect to see DOE, MDO, Pareto optimization and robustness/reliability optimization increasingly utilized by firms engaged in architecture, engineering, construction and asset operation. Continue reading

Latin hypercubes and all that: How DOE works

Making design exploration software speak the language of engineers and not mathematicians has been a focus of development since the industry’s inception. Even so, our recent case study was typical in referencing the Latin hypercube design-of-experiments method, the radial basis function for generating a response surface model, the non-dominated sorting evolutionary algorithm to generate a Pareto front—all prompting this look into some of the quantitative methods that drive design space exploration. Continue reading

Design space exploration industry timeline

A timeline of company formations, product launches and M&A activity among design exploration and optimization software vendors maps the pace and direction of the industry’s development.

Click to view Continue reading

Model-based design optimization of a hybrid electric vehicle

Last week’s post surveyed the trend of integration between design exploration and optimization software and systems modeling and 0D/1D simulation tools. This week’s case study shows how the two technologies were used together in development of a new hybrid electric vehicle (HEV) to achieve the competing goals of improving fuel efficiency and meeting emissions targets.

Executive summary—A leading automotive OEM used Noesis SolutionsOptimus design optimization and process integration software in conjunction with Maplesoft’s MapleSim multi-domain systems modeling and simulation tool in developing the HEV’s combined electric and combustion propulsion system. Optimus was used to automate the traditional guess-and-correct simulation-based design process, its optimization algorithms efficiently directing the system simulation campaign to identify the best HEV configurations. Using Optimus’ capabilities for design of experiments (DOE), response surface modeling (RSM) and multi-objective optimization (MOO), engineers improved fuel efficiency by 21% and traveling performance (legal emissions compliance) by 15%. With MapleSim providing HEV modeling and Optimus controlling simulation workflow execution, the design optimization was accomplished in just two weeks. Continue reading

Model-based design exploration and optimization

Discussions of how to simulate early in product development fixate too often on FEA, overlooking the power of systems modeling and 0D/1D simulation for studying, exploring and optimizing designs at the beginning of projects, when product geometry is seldom available for 3D CAE but engineering decision-making can have its greatest impact and leverage on project success. Continue reading

Take our software user satisfaction survey

If you use design space exploration software, we invite you to take our five-minute survey of satisfaction with your software and vendor, and the benefits you’re realizing, via one of the links below. In return you’ll receive a report of the findings that will let you benchmark your experiences against those of your peers and competitors. Your participation and responses are strictly confidential. Findings will be discussed in aggregate only; no information about individual responses will be released. This survey is our own undertaking and is not commissioned by, nor executed in cooperation with, any software vendor or other party.

To take the survey, click the link for the software you use. If you use more than one brand, take the survey for each brand you use. If you don’t see your software here, click the Other brand link and write in your brand where the survey asks for it. We value your input and look forward to sharing the findings with you.

Innovation and new technology insertion

Ora_Innovation-sourcesFor engineering organizations, where does innovation come from?

When we put that question to EPC firms serving the process and power industries, the most frequent answer was “our projects” and the people working directly in project execution. Forty percent of respondents said their firms’ most important source of innovation is the discovery and application of new technologies and approaches by discipline leads, engineers and managers seeking solutions to pressures and exigencies in a specific project or program.

In second place was “anywhere and everywhere”—27% said innovation at base is a function of their organizations’ culture, and thus can arise from any area in the firm.

In third place was the IT department, named as the top source of innovation by 17% of respondents. While not quite the picture painted in some CIO-oriented publications, these findings align with what our research and others’ suggests is an evolving role for the CIO’s office: to provide enabling infrastructure in support of digital technology initiatives that, more and more, originate from the project execution centers of engineering, manufacturing and construction enterprises. Continue reading

Design space exploration: Justifying the investment

The foundational business value of design space exploration is the ability it confers on engineering teams and organizations to gain more complete, higher-fidelity visibility into product performance earlier in project schedules than was possible or practicable with older technologies and approaches. In essence, it does this by enabling more efficient, effective and revealing application of simulation, analysis and digital prototyping assets—tools, expertise, methods, work processes—to the perennial business drivers for any organization’s investments in those assets:

  • To become more competitive by gaining increased capability to explore, create and innovate.
  • To apply that capability to create better performing products.
  • To improve product quality and reliability—yielding expanded opportunity and customer appeal at the same time as lowered warranty expenses, liability exposure and lifecycle costs.
  • To control or, better yet, reduce product development schedules and budgets by supplanting costly, time-intensive physical testing with digital prototyping.

Continue reading