All posts by Bruce Jenkins

Model-based design exploration and optimization

Discussions of how to simulate early in product development fixate too often on FEA, overlooking the power of systems modeling and 0D/1D simulation for studying, exploring and optimizing designs at the beginning of projects, when product geometry is seldom available for 3D CAE but engineering decision-making can have its greatest impact and leverage on project success. Continue reading

Take our software user satisfaction survey

If you use design space exploration software, we invite you to take our five-minute survey of satisfaction with your software and vendor, and the benefits you’re realizing, via one of the links below. In return you’ll receive a report of the findings that will let you benchmark your experiences against those of your peers and competitors. Your participation and responses are strictly confidential. Findings will be discussed in aggregate only; no information about individual responses will be released. This survey is our own undertaking and is not commissioned by, nor executed in cooperation with, any software vendor or other party.

To take the survey, click the link for the software you use. If you use more than one brand, take the survey for each brand you use. If you don’t see your software here, click the Other brand link and write in your brand where the survey asks for it. We value your input and look forward to sharing the findings with you.

Innovation and new technology insertion

Ora_Innovation-sourcesFor engineering organizations, where does innovation come from?

When we put that question to EPC firms serving the process and power industries, the most frequent answer was “our projects” and the people working directly in project execution. Forty percent of respondents said their firms’ most important source of innovation is the discovery and application of new technologies and approaches by discipline leads, engineers and managers seeking solutions to pressures and exigencies in a specific project or program.

In second place was “anywhere and everywhere”—27% said innovation at base is a function of their organizations’ culture, and thus can arise from any area in the firm.

In third place was the IT department, named as the top source of innovation by 17% of respondents. While not quite the picture painted in some CIO-oriented publications, these findings align with what our research and others’ suggests is an evolving role for the CIO’s office: to provide enabling infrastructure in support of digital technology initiatives that, more and more, originate from the project execution centers of engineering, manufacturing and construction enterprises. Continue reading

Design space exploration: Justifying the investment

The foundational business value of design space exploration is the ability it confers on engineering teams and organizations to gain more complete, higher-fidelity visibility into product performance earlier in project schedules than was possible or practicable with older technologies and approaches. In essence, it does this by enabling more efficient, effective and revealing application of simulation, analysis and digital prototyping assets—tools, expertise, methods, work processes—to the perennial business drivers for any organization’s investments in those assets:

  • To become more competitive by gaining increased capability to explore, create and innovate.
  • To apply that capability to create better performing products.
  • To improve product quality and reliability—yielding expanded opportunity and customer appeal at the same time as lowered warranty expenses, liability exposure and lifecycle costs.
  • To control or, better yet, reduce product development schedules and budgets by supplanting costly, time-intensive physical testing with digital prototyping.

Continue reading

Design exploration software industry M&A outlook 2015

After 2013 saw Red Cedar Technology acquired by CD-adapco and FE-DESIGN by Dassault Systèmes, mergers and acquisitions in the design exploration and optimization software industry took a breather last year. What could drive M&A activity in 2015? Continue reading

Parametric vs. non-parametric optimization

Parametric shape optimization “searches the space spanned by the design variables to minimize or maximize some externally defined objective function” (Jiaqin Chen, Vadim Shapiro, Krishnan Suresh and Igor Tsukanov, Spatial Automation Laboratory, University of Wisconsin–Madison, “Parametric and Topological Control in Shape Optimization,” Proceedings of ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference). “In other words, parametric shape optimization is essentially a sizing problem that is a natural extension of parametric computer-aided design.

“The downside of parametric shapes is that they do not provide any explicit information about the geometry or topology of the shape’s boundaries. This, in turn, leads to at least two widely acknowledged difficulties: boundary evaluation may fail, and topological changes in the boundaries may invalidate boundary conditions or the solution procedure.”

Non-parametric optimization, by contrast, operates at the node/element level to derive an optimal structure. It can offer greater design freedom, and can make use of existing CAE models without the need for parameterization. “The main advantage of non-parametric shape optimization is the ease of setup, avoiding tedious parameterization that may be too restrictive with respect to design freedom” (Michael Böhm and Peter Clausen, FE-DESIGN GmbH, “Non-Parametric Shape Optimization in Industrial Context,” PICOF (Problèmes Inverses, Contrôle et Optimisation de Formes) ’12). “One of the major disadvantages on the other hand is that the CAD interpretation of the shape optimization result is not trivial.” Continue reading

Challenge of multifidelity, multiphysics modeling

In conceptual and preliminary design, many aspects of mechanical products are most efficiently modeled for simulation using 0D/1D/rigid entities. In vehicle drivelines, for example, these include beams, bushings, bearings, point masses and the like. Combining these models with other product components best represented by 2D/3D CAE models can yield systems models that are highly revealing in design exploration activities such as parameter studies, design of experiments and optimization runs. But bringing multiple levels of fidelity together in a single model has conventionally been a labor-intensive manual process, severely limiting the number of design variants able to be studied this way when not precluding the practice altogether.

While mainstream CAE vendors are beginning to progress on this front, breakthrough technologies addressing the problem are available today that work with the industry’s leading solvers. Continue reading

From PIDO to design space exploration

ora_dse_functionstack_141208Design space exploration as an engineering formalism originated in the embedded-systems industry as a set of methodologies for hardware/software co-design, configuration of software product lines, and real-time software synthesis. “The set of all possible design alternatives for a system is referred to as a design-space, and design-space exploration (DSE) is the systematic exploration of the elements in a design-space” (Saxena and Karsai, “Towards a Generic Design Space Exploration Framework,” Proceedings of 2010 IEEE 10th International Conference on Computer and Information Technology).

In mechanical engineering, design space exploration is rooted in the technological domain often referred to as process integration and design optimization, or PIDO, first identified and defined (Jenkins, Daratech, 2001) as software and methods to help:

  • Automate and manage the setup and execution of digital simulation and analysis;
  • Integrate/coordinate analysis results from multiple disciplines and domains to produce a more holistic model of product performance; and
  • Optimize one or more aspects of a design by iterating analyses across a range of parameter values toward specified target conditions.

Continue reading

Anatomy of design space exploration

Design space exploration is both a class of quantitative methods and a category of software tools for systematically and automatically exploring very large numbers of design alternatives and identifying those with the most optimal performance parameters. The mathematical techniques that underpin design space exploration have been long known—and sometimes applied, in cases where the attendant costs in expertise, time and labor could be justified. What’s changing now is the way fresh software technologies are at last converting these powerful but formerly difficult-to-use methods into practical everyday engineering aids. Continue reading

Optimization fundamentals

Design optimization is the search for a structural design that is optimal in one or more respects. In all the various methods available for optimization, the design is guided to satisfy operating limits imposed on the response of the structure, and by further limits on the values that the structural parameters can assume. The power of numerical optimization is its ability to rationally and rapidly search through alternatives for the best possible design(s). Continue reading