Tag Archives: ANSYS Fluent

Optimization at ANSYS Automotive Simulation World Congress

automotive-simulation-world-congressOptimization was a theme running throughout the 2015 Automotive Simulation World Congress organized by ANSYS last week in Detroit. We attended sessions on topology, structural, aerodynamic, adjoint, multi-objective and multidisciplinary optimization that ranged across all the conference tracks—Powertrain, Body & Interior, Chassis, Electrification & Electronics. Continue reading

RBF-based aerodynamic optimization of an industrial glider

rbf1
Figure 1: Taurus glider

Executive summary—Improving the aerodynamic design of an industrial glider flying at Mach 0.08 was the goal of this project: RBF-based aerodynamic optimization of an industrial glider,” Emiliano Costa, D’Appolonia SpA, Rome, Italy; Marco E. Biancolini, Corrado Groth, University of Rome Tor Vergata, Rome, Italy; Ubaldo Cella, Design Methods (www.designmethods.aero), Messina, Italy; Gregor Veble, Matej Andrejasic, Pipistrel d.o.o., Ajdovščina, Slovenia.

The original design exhibited performance-degrading separation in the wing-fuselage junction region at high incidence angles. Using a numerical optimization approach designed to be affordable even with limited HPC resources, the separation was significantly reduced by updating the local geometry of fuselage and fairing while maintaining the wing airfoil unchanged. Shape variations were applied to the glider’s baseline configuration through a mesh morphing technique founded on the mathematical framework of radial basis functions (RBFs). Computational outputs were obtained using a combination of ANSYS DesignXplorer, ANSYS Fluent and RBF Morph software working in the ANSYS Workbench environment. Continue reading